随着芯片尺寸不断缩小且性能日益强大,散热问题逐渐成为制约其发展的关键瓶颈。然而,这一难题如今有望得到突破。东京大学的研究团队近日公布了一种创新的 3D 水冷系统,该系统充分利用了水的相变过程,实现了高达 7 倍的热传递效率提升。
通过集成先进的微通道几何结构和毛细管结构,该系统创造了性能新纪录,为电子技术和可持续技术的未来发展奠定了基础。
东京大学工业科学研究所的研究人员开发了一种新的芯片冷却性能提升方法。他们的研究成果已于近期发表在《Cell Reports Physical Science》杂志上。
目前,一种有效的现代冷却方法是在芯片内部直接构建微通道。这些微小的通道通过循环水吸收并带走热量。然而,这种方法受到水的“显热”的限制,即水在不发生相变的情况下能够吸收的热量。相比之下,水在沸腾或蒸发时吸收的“潜热”大约是其显热的 7 倍。
该技术的效率受到水的显热的限制。显热是指使物质温度升高但不发生相变所需的热量。而水在沸腾或蒸发过程中吸收的相变潜热大约是其显热的 7 倍。该研究的主要作者石洪远解释说:“通过利用水的潜热,可以实现两相冷却,从而显著提高散热效率。”
此前的研究已经展示了两相冷却的潜力,但也指出了该技术的复杂性,主要是由于在加热后难以控制蒸汽气泡的流动。提高热传递效率取决于多种因素,包括微通道的几何形状、两相流的调控以及流动阻力。
该研究描述了一种新型水冷系统,该系统包含三维微流体通道结构,利用毛细管结构和歧管分配层。研究人员设计并制造了各种毛细管几何形状,并在一系列条件下研究了它们的特性。