这10大天文学突破 你知道几个?

2019-04-10 22:30:02 来源:科学出版社 作者:科学出版社 编辑:明镜Mirror 浏览:loading

「同一天空下」系列

  科学的进步有两种方式:

  第一种是知识和数据的日积月累。在天文学领域有很多这样的例子,比如精确地测量恒星的距离、质量、光度、温度和光谱就是一个漫长而艰苦的积累过程。

  第二种是”突破“,我们对宇宙的认知在相对较短的时间内发生了戏剧性的变化,这些都是重大的范式转移。例如,在15世纪的时候,我们认为地球便是宇宙的中心。但到了17世纪,太阳成了宇宙的中心(尽管这个想法也没能维持多久)。

  在这篇文章中,我们将把关注点放在20世纪天文学上的那些重大突破。当你看完这篇文章后,你很快就会发现上个世纪的天文学突破比以往更多,而且比之前更加重大。一个有趣的问题是,在本世纪,我们是否也会经历同样数量的突破性发现?天文学会加快还是放慢它向前迈进的脚步?

游民星空

01

游民星空

  银河系是宇宙中唯一的星系吗?至少在100年前,这个答案是肯定的。但到了1923年,哈勃(Edwin Hubble)使用胡克望远镜发现了M31(仙女座星系)中的一颗造父变星,一切都改变了。基于另一名天文学家勒维特(Henrietta Leavitt)的工作,哈勃得出了一个惊人的结论:M31距离我们90万光年,远在银河系之外!自此之后,我们才意识到原来银河系并非独一无二,宇宙中包含了大量的星系,这是天文学突破和范式转移的一个绝妙例子。今天的天文观测告诉我们,宇宙中的星系数量并不是几万、几十亿或几千亿,而是高达两万亿个!从一到万亿,这是多么巨大的变化啊!

02

游民星空

  爱因斯坦曾一度认为,宇宙是静止的。但事实真的如此吗?

  1929年,哈勃运用胡克望远镜共测量了46个星系的距离和速度。他将这些数据绘制成图像,结果显示:星系的退行速度与距离成正比,且斜率为500km/s/Mpc(这个值被称为哈勃常数)。换句话说,哈勃发现了宇宙正在膨胀,而且距离地球越远的星系,远离我们的速度也就越快!这是多么惊人的发现啊,而且一个膨胀的宇宙也暗示着在遥远的过去,宇宙有一个开端。

  哈勃常数非常重要,它可以被用来计算宇宙的年龄。最初的估计偏离得有些离谱——宇宙的年龄比地球还要小!但随着技术的进步,宇宙学家得到了越来越精确的数值。现在,哈勃常数被确定在70km/s/Mpc左右,宇宙的年龄为138亿年。(事实上,在过去几年中,宇宙学家发现不同的测量方法得到的哈勃常数并不一致!详见:《宇宙学危机:无法统一的哈勃常数!》)

  到了1998年,天文学家发现宇宙不仅在膨胀,而且是在加速膨胀,导致加速膨胀的幕后推手被称为”暗能量“,但没有人知道暗能量的真面目。

03

游民星空

  上个世纪初,我们对恒星的认识依然是非常匮乏的。当时,天文学家意识到恒星都很老,它们的年龄甚至超过了10亿年,在它们生命周期的大部分时间内都是非常明亮的。但天文学家并不知道,恒星为何能够产生如此巨大的能量。到了1905年,爱因斯坦的狭义相对论和质能等价理论(E = mc)触发了一场革命。

  爱丁顿(Arthur Eddington)爵士是最早认识到恒星是全部由气体组成的人之一,他还意识到,恒星的稳定性是向内的引力与向外的气体和辐射产生的压力相抗衡的结果。爱丁顿据此推导出了恒星的质量-光度关系,这对于理解恒星演化至关重要。

  1926年,爱丁顿指出,太阳中心的气体密度是水的密度的100多倍,这个区域的温度超过10开尔文。恒星内部的温度是如此之高,核反应的速率将达到不可忽略的程度。然而,到底是哪种形式的质量被摧毁并转化成能量呢?

  在1920年,阿斯顿(Francis Aston)正在使用自己发明的质谱仪测量一些原子和同位素的质量。他发现,四个氢原子比一个氦原子要重。而其他科学家的发现表明氢和氦是组成恒星的主要成分。

  将这些因素结合起来解决了恒星的能量生成问题,接下来必须有人确切地证明这个过程是如何进行的。这个人就是贝特(Hans Bethe)。1939年,贝特提出了碳氮氧(CNO)循环,之后他又提出了质子-质子循环。这些过程都极其缓慢,因而恒星会在主序阶段停留漫长的时间,缓慢且温和地将氢转化为氦。在此期间,它们的光度变化非常微弱。

  恒星能量来源的机制最终引导天文学家从总体上解决了恒星演化问题,这个过程整整花了35年时间。

1 2 3 下一页
友情提示:支持键盘左右键“← →”翻页
人喜欢
游民星空APP
随时掌握游戏情报
code
休闲娱乐
综合热点资讯
单机游戏下载
好物推荐
游民星空联运游戏
这10大天文学突破 你知道几个?https://imgs.gamersky.com/upimg/2019/201904102205162222.jpg